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Abstract 

An analytical solution of three-dimensional time dependent Petschek type reconnection in compressible plasma 
[1] is extended to the general case of skewed fields, plasma velocities as well as an X-line of finite length. In this 
model it is assumed that all dissipative processes responsible for reconnection are localized in an idealized reconnec-
tion line of effective finite length and can be taken into account by specifying a time and space varying reconnection 
rate. An electric field pulse launches a series of large amplitude non-linear MHD waves, which redistribute the ini-
tial current and form a structured region with accelerated and heated plasma inside. In this way, magnetic energy is 
effectively converted into kinetic and internal energy of the plasma. The time-coordinate representation of the solu-
tion is given in form of convolution integrals over the reconnection initializing electric field, which allows to com-
pute all related quantities like magnetic fields, pressure, plasma density, plasma velocities as well as shape of mov-
ing waves. As an example, reconnection of flux tubes in sheared magnetic field geometry with initial plasma veloci-
ties is analyzed.  

Introduction 
Magnetic field line reconnection is a fundamental plasma process which is important in numerous cases such as 

the solar wind interaction with planetary magnetospheres, the energy release in solar flares, transport processes in 
fusion devices, etc. The ‘fast’ reconnection model originally proposed by Petschek [2] considers the global evolu-
tion of magnetic flux tubes, which have been locally reconnected across an initially magnetically closed current car-
rying surface. In terms of ideal magnetohydrodynamics (MHD) this is described as a broken tangential discontinu-
ity: a local dissipative electric field [3,4,5] tangential to the surface leads to a ‘breaking’ and ‘reconnection’ of mag-
netic flux tubes. The tangential electric field itself is then transported over the surface by large amplitude MHD 
waves. This leads to an effective nonlinear release of energy stored within the current surface. More specifically, the 
surface breaks into a thin boundary layer (BL) which collects plasma from the adjacent reconnected flux tubes and 
accelerates this plasma to Alfvèn speed velocities. 

Reconnection in nature is often observed as a time-dependent process of patchy character. To explain these fea-
tures, the existing analytical solutions for either steady state reconnection in a compressible plasma [6] or time-
dependent reconnection in an incompressible plasma [7] have to be extended to cover such an unsteady and patchy 
behavior. In the present paper, the solution of time varying reconnection in a compressible plasma obtained earlier 
 [8, 9,1] is extended to the more general case where skewed fields are reconnected at an X-line of finite length and 
plasma can have initial velocities.  

In the present study, the shape as well as the spatial localization of the reconnection electric field is assumed a 
priori and from this the plasma flow and magnetic field in the outer, ideal region is computed. For reconnection with 
Bn/B0<<1 (Bn the magnetic field component normal to the surface), i.e., a sufficiently small dissipative electric 

field, there are a number of simplifications, which allow for analytical progress. First of all, in the case of homoge-
neous initial conditions above and below the current surface, the de Hoffmann-Teller velocities are constant in low-
est order with respect to Bn/B0. Therefore, the solution of the corresponding Riemannian problem to some extent 

does not dependent on the actual normal component of the magnetic field which causes the decay. Therefore, a part 
of the problem can be solved solely in terms of these de Hoffmann-Teller velocities [6]. 

The perturbations in form of shocks and discontinuities moving within the BL act as sources for the perturba-
tions in the surrounding medium. The solution in these outer regions is found from the solution of the linearized 
compressible ideal MHD set of equations supplemented with the appropriate boundary conditions, in particular, 
total pressure balance as well as mass and magnetic flux conservation at the location of the initial current surface 
(z=0). 
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We constructed explicitly the outer solution of time varying reconnection of magnetic flux tubes in compressible 
plasma. Results for reconnection in skewed magnetic field structures are presented in order to illustrate the method. 

Results and Discussion 
The derivation of a solution for the case when plasma has initial velocities is similar to our paper [1]: one 

should replace  everywhere. As a result the topology of Cagniard contours in the complex 
plane is changed and poles start to contribute to a value of integrand. Here we present results only because of limited 
space. 

(0)ω ω (→ − ⋅k v )

       To model a pulse of reconnection one has to specify the dependence of the reconnection rate as a function of 
time, e.g., as shown in Figure 1,  
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with maximal reconnection rate . As a function of y, the electric field has a maximum at the origin and 

then decreases with y, the constant a represents an effective length  of the reconnection line. The initial parame-
ters of the current surface (tangential discontinuity) and the corresponding solution of the Riemannian problem are 
presented in Table 1. 
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Within the time-dependent model of reconnection it is possible to distinguish different phases of the process in 
terms of a pulsating reconnection rate. During the active phase (the time period when magnetic field lines are recon-
nected along the X-line, 0<t<2 in our case) and in the nearest vicinity of the reconnection line time dependent re-
connection is very similar to the steady-state Petschek model even for the case of skewed magnetic fields. Thus, for 
very small periods in a very localized region, one can expect behavior similar to classical stationary reconnection. 
However, most of the time when active reconnection has already stopped, thin boundary layer structures are formed 
which propagate along the current surface. During this passive phase (t>2) the whole MHD structure is essentially 
three-dimensional and it looks quite different when compared to the stationary Petschek process (Figure 2). 

For the case of skewed fields all shocks and discontinuities launched by reconnection move not only with differ-
ent de Hoffmann-Teller velocities but also they move in different directions. As a result, the BL regions, which con-
sist of accelerated and heated plasma, are highly elongated with progressively increasing distance between all dis-
continuities. This can be clearly seen in Figure 3 where the cross section of the BL region is shown. 

Each discontinuity produces disturbances in the outer regions corresponding to the poles of the source term. Al-
though the whole structure looks complicated, it is still possible to identify the basic features of skewed field recon-
nection. 

First of all, one has to find the location of the BL region. The Alfvén discontinuities above and below the current 
surface propagate with different Alfvèn velocities. The cross section of the BL region through its center in the di-
agonal direction is shown in the Figure 3. The single discontinuities can be observed. 

Each discontinuity looks similar to a hill on top of the current surface. The behavior of the MHD perturbations 
in the outer regions is similar to that found for a moving object such as a wing in pure hydrodynamics. As can be 
seen from Figure 4, the density and the total pressure are increased in the front of of moving discontinuities and de-
creased in the wake. 

Any enhancement of the total pressure in the front region must be compensated by a corresponding increase in 
total pressure in the lower half space. To establish pressure balance, the upper hill is pushed downward which results 
in the permanent generation of surface waves. This can be seen in Figure 3. 

The scale of the MHD disturbances in the surrounding medium depends on the reconnected flux as well as the 
size and direction of the reconnected fields. The level of the disturbances in the outer regions strongly depends on 
the angle between the reconnected fields. In fact, the BL region collects all plasma from the reconnected flux tubes 
bounded by separatrices. Therefore, the amount of mass, energy and momentum of heated and accelerated plasma 
inside the BL region linearly increases with time. Contrary, the reconnected flux during the passive phase is not 
changed any more. Hence, the more the shocks above and below the current surface separate and the more elongated 
the BL structure is, the less pronounced are the signatures in the outer regions. 
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Figure 1:  The time and space variation of the model reconnection electric field and the corresponding 
reconnected flux function (bottom). 

 
Figure 2:  Reconnection of skewed magnetic fields at time t=4: separatrix surfaces. The arrows indicate the direction 
of the magnetic field above and below the current surface. The corresponding boundary layer structure inside the 
separatrix surfaces is shown in detail in Figure 3.  

  
Figure 3:  The evolution of the non-linear waves initiated by an electric field pulse is shown in a cross section of the 
boundary layer region corresponding to the direction of the internal magnetic field (central part of dashed line in 
Figure 2). Displayed are the separatrix, the Alfvén wave (A), the slow shocks (S), and the contact discontinuity (C).  

 
Figure 4:  The distribution of the total pressure for z=0.  
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Table 1:  Plasma parameters in the different regions and the corresponding de Hoffmann-Teller velocities for x>0.  
 
Region Bx By vx vy ρ p 

0   outer 1.1 0.8 0.1 0.18 0.4 0.185 
1   AS 0.474 1.275 1.090 -0.571 0.400 0.185 
2   SC 0.362 0.976 1.386 0.225 0.913 0.952 
2%    CS%  0.362 0.976 1.386 0.225 1.229 0.952 

1%    S%Г 0.406 1.094 1.456 0.414 1.000 0.673 

0%    outer -0.800 0.850 0.250 0.170 1.000 0.673 

Wave wx wy 

A 1.839 1.445 
S 1.536 0.627 
C 1.386 0.225 
S%  1.201 -0.273 

A%  1.050 -0.680 

 
 

Conclusions 
A new analytical solution of three-dimensional time dependent reconnection in compressible plasma with mov-

ing shocks is presented. In this model it is assumed that all dissipative processes responsible for reconnection are 
localized in an idealized reconnection line of effective finite length and can be taken into account by specifying a 
time and space varying reconnection rate.  

Such an electric field launches a series of large amplitude non-linear MHD waves, which redistribute the initial 
current and form a structured BL region with accelerated and heated plasma inside. In this way, magnetic energy is 
effectively converted into kinetic and internal energy of the plasma. 

The moving slow shocks and Alfven discontinuities excite disturbances in the surrounding media. Solutions for 
a space and time varying reconnection rate are obtained which include coupling of all types of MHD waves (MHD 
discontinuities and linear slow, fast and Alfven waves) under the pressure balance condition. 
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