Login
Password
 Remember Me

Login for Staff|Русская версия

Laboratory of Arctic atmosphere

эта страница также доступна на русском языке посмотреть на русском языке

The lab was founded in February 1996.

Principal scientific task

Investigation of solar radiation and corpuscular effects on the variations of molecule and ion composition and spatio-temporal characteristics of the atmosphere.

Major fields of interests

  • Investigation of spatio-temporal variability of the Arctic troposphere and climate variations on the Kola Peninsula.
  • Investigation of corpuscular flux and X-ray effects on the atmospheric electricity.
  • Analysis of minor species variations in the high-latitude stratosphere and mesosphere caused by space and anthropogenic factors.
  • Modeling of changes of the thermal balance in the upper atmospheres of the terrestrial planets at different stages of solar system evolution.
  • Atmospheric monitoring on the Kola Peninsula and Spitsbergen archipelago with high time resolution.

Research problems

  • Environmental conditions in the Khibiny massif.
  • Origin of extended subarctic spring maximum in the ozone content.
  • Meteorological effects in the variations of the surface ozone content and forecast of ozone extreme contents.
  • Influence of orographical peculiarities on the distributions of air temperature and fall-out in the Khibiny massif.
  • Effects of galactic cosmic rays and solar X-rays on the lightning activity.
  • Estimation of atmospheric electricity variations in different frequency ranges associated with space and meteorological factors.
  • Accuracy of theoretically calculated electronic quenching coefficients for O2 molecules in the collisions with other atmospheric components.
  • Variations in chemical composition of the middle atmosphere during very intense solar proton events for last fifty years, including calculations of odd nitrogen concentrations and influence of NOx on solar photon penetration in the atmosphere.
  • Dynamics of artificial components in the polar atmosphere: electronic, vibrational and rotational kinetics of molecular components during solid-fuel rocket exhausts and formation of artificial clouds.
  • Radiation of electronically excited molecules produced in the atmosphere in result of both chemical processes and resonance scattering of solar light.
  • Efficiency of heating in the terrestrial planet thermospheres by solar UV radiation in the photochemical processes.
  • Diffusive-photochemical models of the neutral and ion composition of the upper atmospheres of the Earth, Venus, and Mars under different solar activity conditions.
  • The rates of atmospheric thermal losses and water content for the terrestrial planets at different stages of the Sun evolution since its arrival to the Zero Age Main Sequence.
  • Electronic kinetics of molecular oxygen in the atmospheres of the Earth and Venus, production function in various electronically excited states of O2 in three-body collisions, and contribution of Herzberg states in the excitation of other O2 states and other atmospheric components.

Latest principal results

  • From meteorological observations in the Khibiny massif, a permanent warming of climate has been observed, as seen for all seasons, and all heights. Since 1988 up to now (with one exception in 1998), only positive deviations of the mean annual temperature from the norm of both 1961-1990 and 1881-1960 have been registered. The warming manifests in distinct landscape changes, such as a raise of the forest zone upper boundary, intrusion of the forest-tundra into the tundra zone, and a total shrinking of the volume and area of glaciers and snowfields.
  • With the use of the boundary layer model, the climatic heights of the mixing layer over the central region of the Kola Peninsula are calculated and the ozone contents on its upper boundary are estimated from the data of the nearest ozone-sounding station in Sodankula, Finland. It is shown that maximum surface ozone concentrations do not exceed those on the upper boundary of the mixing layer, suggesting the turbulent mechanism of ozone surface layer formation in Arctic.
  • From analysis of long term data of ozone-sounding Arctic stations, it is shown that the violation of the quasi-stationary state of the tropopause in the region of polar jet stream can lead to stratospheric ozone flowing into the tropospheric folds, resulting in the formation of lens-like structures with enhanced ozone content in the troposphere. This leads to an inconvertible stratosphere-troposphere exchange.
  • For the first time, regularities in the variations of surface ozone content connected with specific features of turbulent mixing in various synoptic objects, including atmospheric fronts, peripheries of baric structures, anticyclone regions, etc., are studied and explained in terms of atmospheric dynamics for different seasons and synoptic conditions in Arctic.
  • Long term regular measurements of surface ozone content in the mountains of Arctic (Lovchorr mountain, height 1089 m, the Khibiny massif) have been started. The results show that the surface ozone contents in this site correspond to those in the free atmosphere over the central part of the Kola Peninsula, and can be used to estimate the relative contribution of the transport and photochemical processes to the formation of distributions of surface ozone contents at high latitudes for different levels of anthropogenic contamination of the air.
  • The analysis of observations at the top of Lovchorr mountain shows that the appearance of a foehn from the free atmosphere at the height of the station is accompanied by synchronous variations in the surface ozone content, relative humidity and, a lesser degree, air temperature. Surface ozone content enhancements in the presence of foehns make 10-20 ppbv and are connected with the arrival of the air enriched with ozone from higher tropospheric layers.
  • It is shown that the direct contribution of ordered vertical air motions to the diurnal variations of surface ozone concentration in Arctic does not exceed, in average, 2-3% above rugged terrain, and 10-15% at the height of ~ 1 km. This fact along with the results of earlier studies of the dynamics of surface ozone concentration on the Kola Peninsula and Shpitsbergen archipelago allows us to estimate the contributions of all processes that control the balance of surface ozone concentrations in the atmosphere of the Barents region, and conclude that the turbulent mixing is the dominant process.
  • From examining ozone vertical distribution and its temporal variations in the lower troposphere by the data of 60 mountain monitoring stations in Arctic (Khibiny, Scandinavia, Shpitsbergen, Greenland), Alps, Pyrenees, Apennines, Balkan Mountains, and the Caucasus, it is shown that the ozone variations in Arctic are mostly controlled by atmospheric dynamic processes. The contribution from photochemical processes is essential only at moderate and southern latitudes in the warm half-year. The main photochemical ozone sources are located in a 1.5-2 km surface layer and their intensity depends on the regional peculiarities and character of mesoscale circulation.
  • From the analysis of variations of atmospheric electromagnetic noise at the frequency of the first Shuman resonance (SR1) measured by the two-component induction magnetometer at observatory Lovozero in the year 2007, it is demonstrated that:
    • SR1 power variations reproduce the known spatio-temporal regularities of the global lightning discharge activity, namely: (a) maximum activity around 16 –18 LT in all three world centers of lightning discharge activity; (b) an increase in the number of thunderstorms in the Northern Hemisphere in summer;
    • Energy relations between the Asian and American SR1 power maximums greatly varied in 2007: the Asian maximum was stronger than the American one in January through May and in December but they were nearly equal in power in June through October, the American maximum even being somewhat stronger. Only in March the African maximum exceeded in power the Asian and American maximums.
    • Distinct SR1 power maximum is revealed around 06 UT, its most likely cause being the presence of a thunderstorm source in the west of the central part of the Pacific ocean with a peak activity at 21-22 LT and power which is several times less than the power of the major three world lightning centers.
  • From measurements on the Kola Peninsula, SR1 power, considered as an indicator of lightning global generation, is examined under various galactic cosmic ray (GCR) conditions. Analysis is performed for the years 2001 (GCR minimum) and 2007 (GCR maximum). It is found that the effect of GCR is most pronounced for five months, namely, January, and September through December. In these months, SR1 power for 2001 exceeded factor 1.5 or more SR1 power for 2007. Under summer conditions in the Northern Hemisphere this difference disappears in the east-west component, and the north-south component in April through June is characterized by the inverse relation, when SR1 power in 2001 appears even smaller than in 2007. The interpretation of this effect is as follows. While an increase in GCR leads to more frequent lightning generation, yet the intensity of each lightning decreases because of early breakdown in the charge separation and accumulation in a thunderstorm cloud. Conversly, a decrease in GCR, while leading to scarcity in lightning generation, makes more probable the accumulation of large power by a thunderstorm cloud and the enhancement in lightning power up to maximum permissible values.
  • With the use of Landau-Zener and Rozen-Zener quantum-chemical approximations, the quenching rate coefficients of electronically excited molecules of nitrogen N2(A3Σu+,v) and oxygen О2(a1Δg,v) and О2(b1Σg+,v) in collisions with molecules of N2 and О2 have been calculated. A good agreement between the model and observed values is achieved.
  • A detailed model of electronic kinetics of molecular nitrogen N2, molecular oxygen O2 and nitrogen oxide NO has been developed. The model was applied to show that at the heights of the middle atmosphere, during SPEs, a significant part of electronic energy of N2 and О2 is transformed into the energy of very active singlet oxygen and vibrationally excited O2 in molecular collisions, which can transfer their excitation energy to the main molecules of infrared radiation of the middle atmosphere.
  • For the first time calculations of the quenching rate coefficients have been performed for the collisions of N2(a1Πg,v), N2(a‘1Σu−,v), N2(w1Δu,v) with N2 , and O2(A3Σu+,v), O2(c1Σu−,v), O2(A‘3Δu,v) with O2, and the contributions of intramolecular and intermolecular electron energy transfer processes have been estimated for the quenching processes.
  • Using the results of calculations of oxygen losses from the upper atmosphere of Venus due to O+ pickup by the solar wind plasma, it is shown that a non-magnetic planet could lose the mass of water varying from a few to 100 per cent of the mass of the Earth’s ocean for the period of 4.6 billion years of the solar system evolution.
  • For the first time 3D modeling of erosion of the Martian ionosphere due to interaction with extremely intense solar wind and EUV solar radiation at the early stage of evolution (first ~ 150 million years) is performed. It is shown that the rate of О+ ion pickup by the solar wind could be by four orders of magnitude greater than at the present time. Yet, even that intense pickup of О+ ions produced, in particular, by water vapor photolysis could only cause a loss of not more than 8 m of the Mars ocean. The estimates of water losses by Mars due to cold ion outflow for the early 150 million years of evolution, considering the uncertainty in the efficiency of this process, yield 10-70 m of the Martian planetary ocean.

Observation equipment

  • UV-ozonemeter ML9810B
  • UV-ozonemeter DASIBI/1008AH
  • UV-meter “ELDONET”
  • Gas analyzer of nitrogen oxides Р-310-31
  • Ozone generator of the first category ГС-024
  • ozonemeter М-124
  • UV-meter М-124
  • meteostation М-49М
  • radio spectrometer of mm region for altitude ozone profile measurements
  • spectrophotometer “Ozone-2″
  • meteo equipment for remote measurement of temperature, humidity, pressure and wind velocity vector
  • electrochemical ozonemeter
  • chemi-luminescent ozonemeters
  • generators of ozone-air mixture
  • acoustic ultrasound thermometer/anemometer
  • automatic recorders of atmospheric fall-out
  • collector of atmospheric electric current
  • sensor of atmospheric electric field “Field-2”
  • receivers of spherics in various frequency ranges
  • data collectors

Principal grants and projects

  • RFBR № 99-05-64979 – Ozone in the Arctic atmosphere (Kola Peninsula): dynamics, sources, losses.
  • RFBR № 00-05-64733 – Study of temporal and spatial variability of the vertical distribution of nitrogen dioxide in the atmosphere by the ground-based observations.
  • RFBR № 00-05-64742 – Complex study of the tropospheric ozone and phisical-chemical mechanisms of its variations.
  • RFBR № 00-05-72029 – Arctic center of atmospheric-geophysical researches “Lovozero”.
  • RFBR № 02-05-64114 – Ozone dynamics in the Arctic atmosphere (Barents region).
  • RFBR № 02-05-79148 – Measurements of minor gas species content in the atmosphere of the Kola Peninsula.
  • RFBR № 03-05-64712 – Study of spatio-temporal distribution of surface ozone in different Russian regions and theoretical grounds for its forecast.
  • RFBR № 04-05-64584 – Empirical model of the vertical distribution and variations of nitrogen dioxide in the atmosphere.
  • RFBR № 04-05-79085 – Measurements of surface ozone concentrations in the mountains of Arctic (Khibiny).
  • RFBR № 05-05-64271 – Spatio-temporal variability of atmospheric ozone in Arctic.
  • RFBR №08-05-00226 – Study of the processes of ozone production and losses in the Arctic atmosphere (Kola Peninsula, Spitsbergen archipelago).
  • RFBR №09-02-91002-АНФ –Response of the upper atmospheres of terrestrial planets to extreme solar conditions: Implications for atmospheric evolution.
  • Program of basic researches of the RAS Physical department ‘Physics of the atmosphere: electric processes, radio physical methods of researches’.
  • INTAS – Spatial and temporal variations of tropospheric ozone and precursors over Russia (№01-0016).
  • TOR-2 (Tropospheric Ozone Researches).
  • NDSC (Network for Detection of Stratospheric Change).
  • TROICA-6.
  • Project №ICA2-CT-2000-10038) – The formation of the phytotoxic substance trichloroacetic acid – its significance for desertification of semiarid and arid regions in southern Russia and its influence on the natural resources of Arctic regions in northern Russia.
  • Project №03-05-20003 БНТС – Solar-planetary relations and Space Weather.

Scientific relations

The laboratory of Arctic Atmosphere conducts the researches in the cooperation with scientific Russian and foreign organizations such as

  • Physical Institute named after Lebedev (FIAN)
  • Astronomy Institute of RAS (INASAN)
  • Institute of atmospheric physics named after Obukhov of RAS (IFA)
  • Institute of Earth’s magnetism, ionosphere and radiowave propagation named after Pushkov (IZMIRAN)
  • Institute of physics of the Earth named after Shmidt of RAS (IPE)
  • Institute of Applied Physics of RAS (IAP)
  • Moscow State University (MSU)
  • St.-Petersburg State University (SPSU)
  • Head geophysical observatory (HGO)
  • Central aerological observatory (CAO)
  • Hydrometeocenter of the Russian Federation
  • Arctic and Antarctic research institute (AARI)
  • Space Research Institute of the Austrian Academy of Sciences (Graz, Austria)
  • Finnish Meteorological Institute
  • National Institute of Information and Communications Technology (Tokyo, Japan)
  • Kyushu University (Fukuoka, Japan)
  • German AeroSpace Research Center, (Berlin, Germany)
  • International Space Science Institute, (ISSI, Bern, Switzerland)
  • Netherlands Organization for Applied Scientific Research
  • Swedish Environmental Research Institutes
  • Institute of Environmental Sciences (Netherland)
  • University of Leicester (Great Britain)
  • University of Berne (Switzerland)
  • Norwegian Institute for Air Research (Norway)
  • Nagoya University (Japan)
  • UFZ Centre for Environmental Research Leipzig-Halle (Germany)

Principal publications

Kirillov A.S. Application of Landau-Zener and Rosen- Zener approximations to calculate rates of electron energy transfer processes // Adv. Space Res. – 2004. – v.33. – P.993-997.

Kirillov A.S. Calculation of rate coefficients of electron energy transfer processes for molecular nitrogen and molecular oxygen // Adv. Space Res. – 2004. – v.33. – P.998-1004.

Platov Y.V., Chernouss S.A., Kosch M.J. Classification of Gas-Dust Formations from Rocket Exhaust in the Upper Atmosphere // Journal of Spacecraft and Rockets – 2004. – v.41, No.4 (July 01). – P.667-670.

Roldugin V.C., Maltsev Y.P., Vasiljev A.N., Schokotov A.Y. and Belyajev G.G. Schumann resonance frequency increase during solar X-ray bursts // J. Geophys. Res. – 2004. – v.109, No. A1, doi:10.1029/2003JA010019

Roldugin V.C., Maltsev Y.P., Vasiljev A.N., Schokotov A.Y. and Belyajev G.G. Diurnal variations of Schumann resonance frequency in NS and EW magnetic components // J. Geophys. Res. – 2004. – v.109, No.A8, A08304 10.1029/2004JA010487

Roldugin V.C., Tinsley B.A. Atmospheric transparency changes associated with solar wind-induced atmospheric electricity variations // Journ. Atmos. Solar-Terr. Phys. – 2004. – v. 66. – P.1143-1149.

Демин В.И., Белоглазов М.И. О влиянии местных циркуляционных процессов на динамику приземного озона // Оптика атмосферы и океана – 2004. – т.17. – №4. – С.331-333.

Ролдугин В.К., Румянцев С.А., Карпечко А.Ю., Белоглазов М.И. Вариации приземного озона и интенсивность ультрафиолетового излучения на Кольском полуострове // Оптика атмосферы и океана – 2004. – т.17. – №7. – С.598-604.

Румянцев С.А., Ролдугин В.К. Значения потока вовлечения озона для однобоксовой фотохимической модели // Оптика атмосферы и океана – 2004. – т.17. – №8. – С.657-661.

Демин В.И., Белоглазов М.И., Еланский Н.Ф. О связи приземной концентрации озона и высоты слоя перемешивания // Оптика атмосферы и океана – 2004. – т.17. – №8. – С.662-665.

Кириллов А.С. Образование синглетного кислорода в атмосфере Земли во время вторжений солнечных протонов. Экологическая химия. Т.13, №2. С.69-78. 2004.

Демин В.И., Белоглазов М.И., Еланский Н.Ф. Некоторые результаты мониторинга приземного озона на Кольском полуострове при разных уровнях антропогенного загрязнения атмосферы. Экологическая химия. Т.13, №3. С.143-152. 2004.

Beloglazov M.I., Remenets G.F. Investigation of powerful VLF disturbances // Int. J. of Geom. and Aeron. – 2005. – v.5. – doi: 10.1029/2005GI000101, 2005.

Chernouss S.A., Starkov G.V., Yevlashin L.S. World first complex optical instrumental observations of aurora in the Arctic in 1899-1900 // Ann..Geophys. – 2005. – v.23. – No 5. – P.1523 –1531.

Borovkov L.P., Kozelov B.V., Yevlashin L.S., Chernouss S.A. Variations of auroral hydrogen emission near substorm onset // Ann. Geophys. – 2005. – v.23. – No 5. – P.1623–1635.

T. Penz, H. Lammer, Yu.N. Kulikov, H.K. Biernat. The influence of the solar particle and radiation environment on Titan’s atmosphere evolution // Adv. Space Res. – 2005. – V.36, Issue 2, P.241-250. doi:10.1016/j.asr.2005.03.043.

H. Lammer, Yu. N. Kulikov, T. Penz, M. Leitner, H. K. Biernat, and N. V. Erkaev. Stellar-Planetary Relations: Atmospheric Stability as a Prerequisite for Planetary Habitability // Cel. Mech. & Dynam. Astron. – 2005. – v.92, Nos. 1-3, – P.273-285. doi: 10.1007/s10569-005-0004-4 © Springer 2005,

Черников А.А., Звягинцев А.М., Иванова Н.С., Крученицкий Г.М., Кузнецова И.Н., Демин В.И. Содержание озона над территорией Российской Федерации в 2004 г. // Метеорология и гидрология – 2005 г. – №2. – С.112-118.

Демин В.И., Белоглазов М.И., Мокров Е.Г. Феновые эффекты над Хибинами в концентрации приземного озона // Оптика атмосферы и океана – 2005. – т.18. – №7. – С. 613-617.

Демин В.И, Пчелкин В.В., Белоглазов М.И. О реакции общего содержания озона на Форбуш-понижения галактических космических лучей // Оптика Атмосферы и океана – 2005. – т.18. – №10. – С. 893-896.

Галахов А.А. Спектрофотометр дневного неба // Современная электроника – 2005. – №5. – С.48-50.

Демин В.И., Белоглазов М.И., Еланский Н.Ф. Некоторые результаты мониторинга приземного озона на Кольском полуострове (1999-2003гг) // Метеорология и гидрология – 2005. – №10. – С.10-20.

Lammer, H., T. Penz, N. K. Belisheva, Yu. N. Kulikov, and H. K. Biernat (2005). Prerequisites for the evolution of life on exoplanets. // In a book: “Life As We Know It”. Series: Cellular Origin, Life in Extreme Habitats and Astrobiology, Vol. 10, J. Seckbach (Ed.), – Dordrecht, The Netherlands, © Springer 2006, XXVII, 765 p., ISBN-10: 1-4020-4394-5, ISBN-13: 978-1-4020-4394-9.

Kulikov, Yu.N., H. Lammer, H.I.M. Lichtenegger, N. Terada, I. Ribas, C. Kolb, D. Langmayr, R. Lundin, E.F. Guinan, S. Barabash and H. K. Biernat. Atmospheric and water loss from early Venus. // Planet. Space Sci., V.15, Iss.13-14, November 2006, P.1425-1444. (available online, doi: 10.1016/j.pss.2006.04.021).

Lammer, H., Yu. N. Kulikov, H. I. M. Lichtenegger. Thermospheric X-ray and EUV heating by the young Sun on early Venus and Mars // Space Science Reviews, – © Springer 2006. – V. 122, Nos. 1–4. P. 189–196. doi: /10.1007/s11214-006-7018-4.

Lammer, H., Yu. N. Kulikov, T. Penz, M. Leitner, H. K. Biernat, and N. V. Erkaev. Stellar-Planetary Relations: Atmospheric Stability as a Prerequisite for Planetary Habitability // In a book “A Comparison of the Dynamical Evolution of Planetary Systems”. Eds. R. Dvorak and S. Ferraz-Mello, pp.273-285. – Dordrecht, The Netherlands, © Springer 2005, 300 P., ISBN 1-4020-4218-3.

Fadel Kh., Vashenyuk E.V., Kirillov A.S. Ozone depletion in the middle atmosphere during solar proton events in October 2003. // Advances in Space Research. 2006г., V.38, №8, p. 1881-1886

А.М. Звягинцев, Н.С. Иванова, Г.М. Крученицкий, И.Н. Кузнецова, В.И. Демин Содержание озона над территорией Российской Федерации в 2005 г // Метеорология и гидрология – 2006 г. – №2. – С.119-124.

Демин В.И., Карпечко А.Ю., Белоглазов М.И., Кюро Е. О роли турбулентного перемешивания в формировании приземных концентраций озона на Кольском полуострове // Оптика атмосферы и океана. том 19, 2006г., № 5, стр.448-450

Звягинцев А.М., Рудаков В.В., Кузнецова И.Н., Демин В.И. О временном ходе приземного озона в центральном регионе России в весенне-летний период 2004г. // Метеорология и гидрология. 2006 г. №4. стр. 41-47

Демин В.И. О содержании озона в приземном слое в Мурманской области // Экологическая химия. Т.15, 2006. вып. 3, стр. 141-146

Ермолаев Ю.И., Зеленый Л.М.,… Першаков Л.А., Белоглазов М.И.,… Кудела К.. Год спустя: Солнечные, гелиосферные и магнитосферные возмущения в ноябре 2004г. // Геомагнетизм и аэрономия. 2005, №6, с.723-763

Першаков Л.А., Ролдугин В.К., Румянцев С.А., Шишаев В.А.. Химические
взаимодействия озона в воздухе и вертикальная протяжённость области техногенного загрязнения воздуха. // Экологическая химия. –2006. Т.15, вып.2, с. 69-74.

Ролдугин В.К., Першаков Л.А., Румянцев С.А.. Вариации атмосферного
электрического поля во время нефелиновых бурь вблизи г. Апатиты. // Оптика
атмосферы и океана. –2006. Т. 19, № 9. С. 1-5.

Yu. N. Kulikov, H. Lammer, H.I.M. Lichtenegger, T. Penz, D. Breuer, T. Spohn, R. Lundin, H.K. Biernat. A Comparative Study of the Influence of the Active Young Sun on the Early Atmospheres of Earth, Venus, and Mars. // in “Geology and Habitability of Terrestrial Planets”. Fishbaugh, K.E.; Des Marais, D.J.; Korablev, O.; Lognonné, P.; Raulin, F. (Eds.) Space Sciences Series of ISSI, v. 24, pp. 207-243, 2007; ISBN: 978-0-387-74287-8. (3,6 а.л.) Springer, Dordrecht, The Netherlands. Reprint from Space Science Reviews, v.129, Nos. 1-3, 2007.

V. Dehant, H. Lammer, Yu.N. Kulikov, J.-M. Grießmeier, D. Breuer, O. Verhoeven, Ö. Karatekin, T. Van Hoolst, O. Korablev, P. Lognonné. Planetary Magnetic Dynamo Effect on Atmospheric Protection of Early Earth and Mars // in “Geology and Habitability of Terrestrial Planets”. Fishbaugh, K.E.; Des Marais, D.J.; Korablev, O.; Lognonné, P.; Raulin, F. (Eds.) Space Sciences Series of ISSI, v. 24, pp. 279-300, 2007; ISBN: 978-0-387-74287-8. (2.1 а.л.) Springer, Dordrecht, The Netherlands. Reprint from Space Science Reviews, v.129, Nos. 1-3, 2007.

H. Lammer, M. L. Khodachenko, H. I. M. Lichtenegger, Yu. N. Kulikov. Impact of stellar activity on the evolution of planetary atmospheres and habitability // in “Extrasolar Planets: Formation, Detection and Dynamics” R. Dvorak (ed.) pp. 127 – 146, 2007, (1.9 а.л.) WILEY-VCH Verlag, Weinheim, Physics Textbook, ISBN: 978-3-527-40671-5.

Kulikov Yu.Yu., Krasil’nikov A.A., Kukin L.M., Ryskin V.G., Beloglazov M.I., and Savchenko V.R. On the Behavior of Stratospheric Ozone in the Western Arctic during the 2003–2004 Winter and Spring // Izvestiya, Atmospheric and Oceanic Physics. – 2007. – V.43. -P.232–236

Kulikov Yu. N., Lammer H., Lichtenegger H.I.M., Penz T., Breuer D., Spohn T., Lundin R. , Biernat H.K. A Comparative Study of the Influence of the Active Young Sun on the Early Atmospheres of Earth, Venus, and Mars. // Space Sci. Rev. – 2007. – V.129. -P.207-243. doi: /10.1007/s11214-007-9192-4. ISSN 0038-6308

Lammer H., Kulikov Yu. N. Possible Atmospheric and UV Conditions on Mars in the Past – Biological Implications (2007) // In “ROME: Response of organisms to the Martian environment”, pp.19-33. Carl Walker (ed.). ESA Publications Division, ESTEC, Noordwijk, The Netherlands, ESA SP-1298: 2007.

Dehant V., Lammer H., Kulikov Yu.N., Grießmeier J.-M., Breuer D., Verhoeven O., Karatekin Ö., Van Hoolst T., Korablev O., Lognonné P. Planetary Magnetic Dynamo Effect on Atmospheric Protection of Early Earth and Mars // Space Sci. Rev. -2007. – V.129. -P. 279-300. doi: 10.1007/s11214-007-9163-9, ISSN 0038-6308

Erkaev N.V., Kulikov Yu.N., Lammer H., Selsis F., Langmayr D., Jaritz G.F., and Biernat H.K. Roche lobe effects on the atmospheric loss from “Hot Jupiters” // Astron. & Astrophys. -2007. – V.472. -P.329-334. doi: 10.1051/0004-6361:20066929. ISSN (Print): 0004-6361; ISSN (Online): 1432-0746. (A&A Homepage)

Scalo J., Kaltenegger L., Segura A., Fridlund M., Ribas I., Kulikov Yu.N., Grenfell J.L., Rauer H., Odert P., Leitzinger M., Selsis F., Khodachenko M.L., Eiora C., Kasting J., and Lammer H. M Stars as Targets for Terrestrial Exoplanet Searches and Biosignature Detection // Astrobiology. – 2007. – V.7. -P.85–166. doi: 10.1089/ast.2006.0000. ISSN 1531-1074.

Lammer H., M. Lichtenegger H.I., Kulikov Yu.N., Grießmeier J.-M., Terada N., Erkaev N.V., Biernat H.K., Khodachenko M.L., Ribas I., Penz T., Selsis F. Coronal Mass Ejection (CME) Activity of Low Mass M Stars as an Important Factor for the Habitability of Terrestrial Exoplanets. II. CME-Induced Ion Pick Up of Earth-Like Exoplanets in Close-In Habitable Zones // Astrobiology. – 2007. – V.7. -P.185–207. doi: 10.1089/ast.2006.0128. ISSN 1531-1074.

Lichtenegger H.I.M., Lammer H., Kulikov Yu.N., Kazeminejad S., Molina-Cuberos G.H., Rodrigo R., Kazeminejad B., Kirchengast G. Effects of low energetic neutral atoms on Martian and Venusian dayside exospheric temperature estimations // Space Sci. Rev. -2006. – V.126. – P. 469–501. doi: /10.1007/s11214-006-9082-1. ISSN: 0038-6308.

Демин В.И., Белоглазов М.И., Шишаев В.А. О содержании озона в приземном слое на архипелаге Шпицберген в 2005-2006 гг. // Оптика атмосферы и океана. – 2007. -T.20, №10.-С.906-909

Сигернес Ф., Холмс И.М., Черноус С.А., Свиню Т., Дирланд М., Лоренцен Д.А., Моен И., Дир Ч.С. Абсолютная калибровка оптических приборов с малым полем зрения // Оптический журнал. -2007. -T.74, № 10. -C.29-35

A. S. Kirillov. The study of intermolecular energy transfers in electronic energy quenching for molecular collisions N2-N2, N2-O2, O2-O2 // Ann. Geophys., 26, 1149-1157, 2008 (0,6 а.л.)

A. S. Kirillov. Electronically excited molecular nitrogen and molecular oxygen in the high-latitude upper atmosphere // Ann. Geophys., 26, 1159-1169, 2008

S. Chernouss and I. Sandahl. Comparison and significance of auroral studies during the Swedish and Russian bilateral expedition to Spitsbergen in 1899–1900 // Ann. Geophys., 26, 1127-1140, 2008

S. A. Chernouss, O. M. Sharovarova, Yu. V. Fedorenko, A. V. Roldugin, and L. S. Yevlashin. First observations from a CCD all-sky spectrograph at Barentsburg (Spitsbergen) // 
Ann. Geophys., 26, 1121-1125, 2008

Lammer, H., Kasting, J.F., Chassefiere, E., Johnson, R. E., Kulikov, Y. N., Tian, F. Atmospheric Escape and Evolution of Terrestrial Planets and Satellites. // Springer: Space Sci. Rev., 2008, v.139: pp.399–436; doi: 10.1007/s11214-008-9413-5

Penz, T.; Erkaev, N. V.; Kulikov, Yu. N.; Langmayr, D.; Lammer, H.; Micela, G.; Cecchi-Pestellini, C.; Biernat, H. K.; Selsis, F.; Barge, P.; Deleuil, M.; Léger, A. Mass loss from “Hot Jupiters”—Implications for CoRoT discoveries, Part II: Long time thermal atmospheric evaporation modeling. // Elsevier: Planet. Space Sci., 2008, v.56, No.9, p. 1260-1272. (P&SS Homepage), doi: 10.1016/j.pss.2008.04.005.

Sigernes, Fred; Holmes, Jeffrey Morgan; Dyrland, Margit; Lorentzen, Dag Arne; Svenøe, Trond; Heia, Karsten; Aso, Takehiko; Chernouss, Sergey; Deehr, Charles Sterling . Sensitivity calibration of digital colour cameras for auroral imaging // Optics Express, Vol. 16, Issue 20, pp. 15623-15632, 2008.

F. Sigernes, J. M. Holmes, M. Dyrland, D. A. Lorentzen, S. A. Chernous, T. Svinyu, J. Moen, and C. S. Deehr. Absolute calibration of optical devices with a small field of view // J. Opt. Technol. 74, 669-674, 2007. (не была учтена в 2007 г.)

Roldugin V.K. and Beloglazov M.I. Schumann Resonance Amplitude during the Forbush Effect // Geomagnetism and Aeronomy, 2008, Vol.48, No.6, pp.768 –774. (0,5 а.л.)

Демин В.И. Приземный озон: корректны ли ПДК? // Экология и жизнь. 2008. №10. С.56-57.

Демин В.И., Белоглазов М.И. Медико-экологические аспекты вертикального распределения озона в горных районах // Экология человека. 2008. №11. С.3-8

Пильгаев С.В, Ахметов О.И., Филатов М.В., Федоренко Ю. В. Универсальный синхронизатор. // Приборы и техника эксперимента,. № 3, с.1-2, 2008.

H. Lammer, M. L. Khodachenko, H. I. M. Lichtenegger, Yu. N. Kulikov. Impact of stellar activity on the evolution of planetary atmospheres and habitability (2008) // in “Extrasolar Planets: Formation, Detection and Dynamics.” R. Dvorak (ed.) pp. 127-149, 2008, WILEY-VCH Verlag, Weinheim, Physics Textbook.

Демин В.И., Звягинцев А.М., Кузнецова И.Н. О действующих в Российской Федерации нормативах по содержанию озона в атмосферном воздухе // Экология человека. 2009. № 1. с.4-8.

Галахов А.А., Ахметов О. И. Ультразвуковой анемометр на программируемых аналоговых ИС Anadigm // Современная электроника. 2009. №4, с.36-38.

Галахов А. А. Измеритель атмосфериков на программируемых аналоговых микросхемах // Современная электроника. 2009. №5. с.34-37.

Демин В.И., Белоглазов М.И. Взаимодействие атмосферного озона с капельным аэрозолем в горных условиях Арктики // Оптика атмосферы и океана. Т.22. 2009. №7. с.650-653.

N. Terada, Yu. N. Kulikov, H. Lammer, H. I. M. Lichtenegger, T. Tanaka, H. Shinagawa, and T. Zhang. Atmosphere and Water Loss from Early Mars Under Extreme Solar Wind and Extreme Ultraviolet Conditions. // Astrobiology, 2009, v.9, No.1, pp.55–70. 2009; doi: 10.1089/ast.2008.0250.

K. Liu, E. Kallio, R. Jarvinen, H. Lammer, H. I.M. Lichtenegger, Yu. N. Kulikov, N. Terada, T. L. Zhang, P. Janhunen. Hybrid simulations of the O+ ion escape from Venus: Influence of the solar wind density and the IMF x component. 2009 COSPAR. // Adv. Space Res., 2009, v.43, pp.1436–1441. doi:10.1016/j.asr.2009.01.005.

C. Martinecz, A. Boesswetter, M. Fränz, E. Roussos, J. Woch, N. Krupp, E. Dubinin, U. Motschmann, S. Wiehle, S. Simon, S. Barabash, R. Lundin, T.L. Zhang, H. Lammer, H. Lichtenegger, Yu. Kulikov. Plasma environment of Venus: Comparison of Venus Express ASPERA-4 measurements with 3-D hybrid simulations. // J. Geophys. Res., 2009, v.114, E00B30, doi:10.1029/2008JE003174.

Lichtenegger, H. I. M., H. Gröller, H. Lammer, Y. N. Kulikov, and V. I. Shematovich., On the elusive hot oxygen corona of Venus. // Geophys. Res. Lett., 2009, v.36, L10204,, doi:10.1029/2009GL037575.

H. Lammer, J. H. Bredehöft, A. Coustenis, M. L. Khodachenko, L. Kaltenegger, O. Grasset, D. Prieur, F. Raulin, P. Ehrenfreund, M. Yamauchi, J.-E. Wahlund, J.-M. Grießmeier, G. Stangl, C. S. Cockell, Yu. N. Kulikov, J. L. Grenfell and H. Rauer. What makes a planet habitable? // Astron. Astrophys. Rev., 2009, v.17, No.2, pp.181-249;, doi 10.1007/s00159-009-0019-z.